SILPAKORN UNIVERSITY
Science and Technology Journal

Editorial Office
Silpakorn University Research and Development Institute (SURDI), Silpakorn University,
Sanamchandra Palace Campus, Nakhon Pathom, Thailand

Editorial Policy
All articles submitted for publication will be evaluated by a group of distinguished reviewers.
The editorial board claims no responsibility for the contents or opinion
expressed by the authors of individual article.

Editorial Advisory Board

Assist. Prof. Alice Thienprasert, Ph.D
Director, Silpakorn University Research and Development Institute, Thailand

Prof. Amaret Bhumiratana, Ph.D
Department of Biotechnology, Mahidol University, Thailand

Prof. Geoffrey A. Cordell, Ph.D
Professor Emeritus, University of Illinois at Chicago, USA

Prof. Kanaya Shiginori, Ph.D
Department of Material and Life Sciences, Osaka University, Japan

Prof. Keiji Yamamoto, Ph.D
Graduate School of Pharmaceutical Sciences, Chiba University, Japan

Assoc. Prof. Kriengsak Poonsuk, Ph.D
Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Thailand

Assist. Prof. Lerkiat Vongsarnpigoon, Ph.D
National Metal and Materials Technology Center (MTEC), Thailand

Assoc. Prof. Nijsiri Ruangrungsri, Ph.D
Department of Pharmacognosy, Chulalongkorn University, Thailand

Assoc. Prof. Petcharit Pongcharoenus, Ph.D
Department of Pharmacy, Mahidol University, Thailand

Prof. Piyasan Praserthdam, Ph.D
Department of Chemical Engineering, Chulalongkorn University, Thailand

Assoc. Prof. Surachai Nimjirawat, Ph.D
Department of Chemistry, Silpakorn University, Thailand

Prof. Tharmmasak Sommartya, Ph.D
Faculty of Agriculture, Bangkhen Campus, Kasetsart University, Thailand

Prof. Virulh Sa-Yakanit, Ph.D
Department of Physics, Silpakorn University, Thailand

Editor

Assoc. Prof. Onoomar (Poobrasert) Toyama, Ph.D
Faculty of Pharmacy, Silpakorn University
SILPAKORN UNIVERSITY
Science and Technology Journal

Editorial Board
Assist. Prof. Bussarin Kasapabutr, Ph.D
Faculty of Engineering and Industrial Technology, Silpakorn University
Prof. Chawewan Ratanaprasert, Ph.D
Faculty of Science, Silpakorn University
Assist. Prof. Chockpisit Thetsitthar, Ph.D
Faculty of Science, Silpakorn University
Assoc. Prof. Mana Kanjanamaneesathian, M.Appl.Sc.
Faculty of Animal Sciences and Agricultural Technology, Silpakorn University
Assist. Prof. Pramote Khwuijitjaru, Ph.D
Faculty of Engineering and Industrial Technology, Silpakorn University
Agnes Rimando, Ph.D
U.S. Department of Agriculture, Agricultural Research Service, USA
Prof. Juan Boo Liang, Ph.D
Institute of Bioscience, Universiti Putra Malaysia, Malaysia
Prof. Shuji Adachi, Ph.D
Graduate School of Agriculture, Kyoto University, Japan
Vincenzo Esposito, Ph.D
Department of Chemical Science and Technology, University of Rome, Italy

Managing Editor
Pranee Vichansvakul

Periodicity
Twice yearly

All correspondence should be addressed to:
Managing Editor, SUSTJ, 44/114 Soi Phaholyothin 52 Phaholyothin Road,
Klongthanon, Saimai, Bangkok 10220, Thailand
Telephone: 080-5996680 Fax: 66-2973-8366
E-mail address: pranee_aon1@hotmail.com
Web site: http://www.journal.su.ac.th

Information about the Journal
An electronic journal is provided on the web site (http://www.journal.su.ac.th).
The journal is available at Silpakorn University Book Center. Telephone: 66-2223-7345,
66-2434-1792, 66-3424-4054.
Instructions to Authors

Silpakorn University Science and Technology Journal (SUSTJ) is published twice a year in June and December by the Research and Development Institute of Silpakorn University, Thailand. The journal puts together articles in Science and Technology and aims to promote and distribute peer reviewed articles in the areas of science, health science, animal science, agriculture, engineering, technology and related fields. Articles from local and foreign researchers, invited articles and review from experts are welcome.

Types of contributions
 Short communications, Research articles, Review articles

Preparation of manuscripts
 1. The text should be double-spaced with line number on A4 and a font Times New Roman size 11 should be used. When using MS Word, insert all symbols by selecting “Insert-Symbol” from the menu and use the “Symbol” font.
 2. Manuscripts should be organized in the following order:
 Cover page with title and authors’ names and affiliations
 Abstract (in English and Thai)
 Key Words
 Introduction
 Materials and Methods, Area Descriptions, Techniques
 Results
 Discussion
 Conclusion
 Acknowledgements
 References
 Tables and Figures

Authors’ names and affiliations
 Full names and affiliations (marked with superscript number) should be provided for all authors on the cover page, separately from the content. The corresponding author (marked with superscript asterisk) should also provide a full postal address, telephone and fax number and an e-mail address as a footnote on the title page.

Abstract
 First page of the content starts with Abstract, including title of the article on top of page. Provide a short abstract not more than 200 words, summarizing the question being addressed and the findings.

Key Words
 Provide 3-5 key words or short phrases in alphabetical order, suitable for indexing.

References
 In text references: Refer to the author’s name (without initials) and year of publication, e.g., Feldmann, 2004 (for 1 author), Feldmann and Langer, 2004 (for 2 authors), or Feldmann et al., 2004 (for more than 2 authors).

 Article references: References should be listed in alphabetical order of author(s). For journal, list all names of authors.

Book
Chapter in a book

Article in a journal

Article on the web

Proceedings

Patent

Tables and Figures
Each Table and Figure must be on a separate page of the manuscript.

Tables: Number the tables according to their sequence in the text. The text should include references to all tables. Vertical lines should not be used to separate columns. Leave some extra space instead.

Figures: Figures should be of high quality (not less than 300 dpi JPEG or TIFF format), in black and white only, with the same size as the author would like them to appear in press. Choose the size of symbols and lettering so that the figures can be reduced to fit on a page or in a column.

Submission of Manuscripts
Authors should verify, on the submission form, that the submitted manuscript has not been published or is being considered for publication elsewhere. All information contained in an article is full responsibility of the authors, including the accuracy of the data and resulting conclusion. Authors are requested to send the manuscript on a CD labeled with the authors’ names and file names. The files should be prepared using MS Word only. Three copies of manuscript must be supplied.

The editorial office will acknowledge receipt of the manuscript within 2 weeks of submission. The ‘accepted date’ that appears in the published article will be the date when the managing editor receives the fully revised version of the manuscript. The manuscript may be returned to authors for revision. Authors will be given 2 weeks after receipt of the reviewers’ comments to revise the article.

Please submit the manuscript with a CD and a submission form to the following address:
Pranee Vichansvakul
44/114 Soi Phaholyothin 52 Phaholyothin Road,
Klongthanon, Saimai, Bangkok 10220

Proofs
Proofs will be sent to the corresponding author by e-mail (as PDF file) or regular mail. Author is requested to check the proofs and return any corrections within 2 weeks.
Research Articles

A Comparison of Image Analysis Software for Quantitative TLC of Ceftriaxone Sodium

Panadda Phattanawasin, Uthai Sotanaphun, Lawan Sriphong,
Inthira Kanchanaphibool and Nusara Piyapolrungroj

Differentiation of a Hyperthermophilic Archaeon Pyrococcus sp. strain Pikanate 5017, by Arbitrarily Primed PCR

Patlada Pasomsup, Juan Miguel González, Maria Carmen Portillo,
Veeranun Pongsapukdee and Wirojne Kanoksilapatham

All Congruence Modular Symmetric and Near-Symmetric Algebras

Chawewan Ratanaprasert and Supharat Thiranantanakorn

Studies on Electrochromism of Chemically Deposited Nickel Oxide Thin Films

Julijana Velevska, Margareta Pecovska-Gjorgjevich,
Metodija Najdoski and Nace Stojanov
Research Article

A Comparison of Image Analysis Software for Quantitative TLC of Ceftriaxone Sodium

Panadda Phattanawasin,1* Uthai Sotanaphun,2 Lawan Sriphong,1 Inthira Kanchanaphibool3 and Nusara Piyapolrungroj4
1Department of Pharmaceutical Chemistry, 2Department of Pharmacognosy, 3Department of Pharmacy, 4Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
*Corresponding author. E-mail address: ypanadda@su.ac.th

Received September 7, 2010; Accepted February 15, 2011

Abstract

Three image analysis software, Photoshop, Sorbfil TLC Videodensitometer software and Scion Image, were used for quantitative evaluation of TLC images of ceftriaxone sodium (CFX). Regression plots and detection sensitivity of quantification from each TLC-image analysis were determined and compared to TLC-densitometry. TLC-image analysis method using Scion Image and Sorbfil TLC Videodensitometer software and TLC-densitometry showed the polynomial regression data with good relationship ($R^2 > 0.99$) over the concentration range of 1-8 μg/spot whereas the analysis of TLC images with Photoshop showed good polynomial regression plots ($R^2 > 0.99$) at higher concentration range, 4-10 μg/spot. For detection sensitivity, LOD and LOQ determined from TLC-image analysis using Sorbfil TLC Videodensitometer were comparable to the values from TLC-densitometry. Scion Image and Photoshop was found to be less sensitive. The use of Sorbfil TLC Videodensitometer software for TLC image analysis could be further applied for rapid determination of CFX in bulk drug and dosage forms.

Key Words: TLC; Image analysis software; Ceftriaxone sodium

Introduction

Ceftriaxone sodium (CFX) is a semisynthetic, third-generation cephalosporin antibiotic which has been widely used for treatment of severe bacterial infections and bacterial meningitis. For determination of CFX in bulk drugs and dosage forms, several chromatographic and spectrophotometric methods including densitometric-TLC and HPTLC (Dhanesar, 1998; Eric-Jovanovic et al., 1998; Nabi et al., 2004; Mohamed et al., 2008), HPLC (Abdel-Hamid, 1998; Xu and Trissel, 2003), ion-pair reversed-phase liquid chromatography, fluorimetric and capillary electrophoresis methods (Gáspár et al., 2002; Bebawy et al., 2003; El-Shaboury et al., 2007) have been used.

Until recently, the use of TLC-image analysis has been applied for content determination of several compounds (Hung et al., 2001; Mustoe and McCrossen, 2001; Johnsson et al., 2007; Sotanaphun et al., 2009). The major advantages of TLC are due to its simplicity, a small quantity of solvents used, minimum sample preparation and
high sample throughput. With a combination of simple computer technology and image analysis software for evaluation of TLC chromatogram, the quantitative TLC method based on image analysis is more convenient and less expensive than other chromatographic methods.

Commercial and free web-based image software for TLC-image analysis are available in which performances are based on sensitivity of spot detection, background compensation algorithms, intensity resolution, precision and accuracy of image analysis. From our attempt to develop a simple and rapid TLC–image analysis method for determination of CFX in bulk and pharmaceutical dosage forms, chromatographic separation of CFX was achieved on RP-18 F_{254S} TLC plates. The use of three image analysis software including Photoshop, Sorbfil TLC Videodensitometer and Scion Image for evaluation of the TLC plates were compared with TLC-densitometric method in terms of regression plots and detection sensitivity of quantification and described herein.

Material and Methods

Chromatographic Conditions

TLC analysis was performed on TLC silica gel 60 RP-18 F_{254S} aluminium plates (10 cm x 8 cm with 185 μm thickness, Merck, Germany). Two μL of CFX solution were spotted manually onto a TLC plate by using a 2 μL capillary tube (Drummond Scientific Company, USA). A distance between each spot was 0.8-1.0 cm. The plate was then developed to a distance of 6.5 cm in a TLC chamber previously saturated with 15% w/v ammonium acetate buffer (pH 6.2)-methanol-acetonitrile (12:0.5:0.25, w/v/v) for 20 min. After air-drying, an image of the developed plate under a UV lamp (CAMAG UV-cabinet II, Switzerland) at 254 nm was taken by a digital camera (Ixus 860, Cannon) setting on a tripod to a distance of 37 cm above the image. An auto mode, ISO setting at 200 and Macro (close-up) function was used and the flash was off. The shutter speed, aperture settings and zoom in were at 1/8, 5.8 and 3.8x, respectively. The image size captured by a digital camera was set to superfine (S) and large (L) and saved in a form of a joint photographic experts group (JPEG) file. Then, a JPEG image was resized and cropped according to the plate dimension at 10 cm x 8 cm and saved at a resolution of 60 pixels/cm for TLC-image analysis.

TLC-Image Analysis Method

Quantification of CFX in the TLC image was carried out by Photoshop, Sorbfil TLC Videodensitometer software and Scion Image software.

The analysis of TLC images by Photoshop was performed by adjusting the image at threshold value of 130. The image was converted to black and white. Each band was selected by a magic wand tool and the area was determined in terms of pixel numbers. Pixel numbers in the selected area were measured by a histogram command in Photoshop software.

For image analysis by Sorbfil TLC Videodensitometer software (Sorbpolymer, Krasnodar, Russia), Background Approximation tool was used to provide the uniform illumination of the background and arrangement of track lines was made by using Regular Tracks command. The evaluation of the chosen track was processed by using Process Track command. In order to determine the background intensity of the plate, for each line method at the values of width and height at 3 and 30, respectively, was used. A chromatogram was constructed on the deviation of track intensity from background intensity. \(R_f \), peak area and peak height of CFX were determined and the results of the track evaluation were given in the Track Evaluation Results box.
The greyscale image of TLC chromatogram was used for analysis by Scion Image program version Alpha 4.0.3.2 (Scion Corporation, Maryland, USA). A profile plot along the chromatogram was generated using the macro Gelplot2. The peak corresponding to CFX was selected by the wand tool for measuring the area under the curve (AUC).

TLC-Densitometry

For TLC-densitometric analysis, the developed TLC plate under the chromatographic conditions as above was scanned by using a CAMAG TLC scanner II with CAMAG CATS 3.1 software in the absorbance mode at 302 nm. The slit dimension was 5.0 mm × 5.0 mm and the scanning speed was 4 mm/s.

Regression plots

Regression plots were performed by spotting two µL of working standard solutions of CFX (0.25-5.0 mg/mL) prepared from a stock solution of CFX (5.0 mg/mL) in distilled water on a TLC plate to give the concentrations of 0.5, 1, 2, 4, 6, 8 and 10 µg/spot of CFX. The plate was developed according to the above TLC-image analysis and TLC-densitometric methods. Plots between peak height or peak area and drug concentration in µg/spot were constructed and treated by least square regression analysis using Excel.

Detection Sensitivity

The linear regression data constructed from three concentrations at the lower range were used to determine limit of detection (LOD) and limit of quantitation (LOQ) values (Ansari et al., 2005). The LOD and LOQ were determined from the formulae 3 SD/S and 10 SD/S where SD was the standard deviation (SD) of the intercept and S corresponded to the slope.

Results and Discussion

Reversed phase TLC (RP-18 F \(_{254}\) TLC) plates and the mobile phase consisting of 15% w/v ammonium acetate buffer (pH 6.2)-methanol-acetonitrile (12:0.5:0.25, v/v/v) was employed to analyze CFX, showing a well-defined spot of CFX at an \(R_f\) value of 0.58. The peak area and the peak height of CFX were determined from TLC-image analysis and TLC-densitometric method and used for construction of regression plots. The study showed that the determination of peak area and peak height was available by Sorbfil TLC Videodensitometer and TLC-densitometer whereas Photoshop and Scion image could measure only peak area. For peaks without full separation at peak base, peak height could be more useful for determination of the content of substance in those peaks.

For the analysis of CFX by different TLC methods, the results showed that the peak area of the spot at concentration being less than 4 µg/spot was unable to be detected by TLC-image analysis using Photoshop whereas both TLC-densitometric and TLC-image analysis methods using Scion Image and Sorbfil TLC Videodensitometer software could detect the peak corresponding to the concentration at 0.5 µg/spot (Figure 1). However, poor precision of detection was observed at this concentration. Therefore, the regression data of the plots between peak height or peak area and concentrations over the range of 1-10 µg/spot were examined.

The data from the analysis of TLC images with Photoshop showed good polynomial regression plots (\(R^2 > 0.99\)) over the concentration range of 4-10 µg/spot whereas the data from both TLC-densitometric and TLC-image analysis methods using Scion Image and Sorbfil TLC Videodensitometer software...
A chromatogram was constructed from each track evaluation and the peak area and height were determined by the software.

<table>
<thead>
<tr>
<th>Track</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>4.0</th>
<th>6.0</th>
<th>8.0</th>
<th>μg/spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>10</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>8.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The image was converted to black and white and pixel numbers in the selected area were measured by a histogram command in Photoshop software.

A chromatogram was constructed for each track and the peak area was selected by the wand tool and measured.

<table>
<thead>
<tr>
<th>Track</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>4.0</th>
<th>6.0</th>
<th>8.0</th>
<th>μg/spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>10</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>8.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 TLC image a) before evaluation, and evaluation by b) Photoshop, c) Sorbfil TLC Videodensitometer software, and d) Scion Image
Table 1 Polynomial regression data determined using TLC-densitometric and TLC-image analysis methods

<table>
<thead>
<tr>
<th>Analytical technique</th>
<th>Concentration (µg/spot)</th>
<th>Regression between</th>
<th>(a^*)</th>
<th>(b^*)</th>
<th>(c^*)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC-Densitometry</td>
<td>1-8</td>
<td>A and C</td>
<td>-56.072</td>
<td>1171.3</td>
<td>1435.7</td>
<td>0.9938</td>
</tr>
<tr>
<td></td>
<td>H and C</td>
<td></td>
<td>-0.7195</td>
<td>13.524</td>
<td>5.9907</td>
<td>0.9983</td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>A and C</td>
<td>1.1625</td>
<td>602.03</td>
<td>2624.9</td>
<td>0.9906</td>
</tr>
<tr>
<td></td>
<td>H and C</td>
<td></td>
<td>-0.0875</td>
<td>7.475</td>
<td>17.86</td>
<td>0.9853</td>
</tr>
<tr>
<td>TLC-Image analysis</td>
<td>4-10</td>
<td>A and C</td>
<td>117.31</td>
<td>1513.2</td>
<td>-1013.4</td>
<td>0.9979</td>
</tr>
<tr>
<td>using Photoshop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC-Image analysis</td>
<td>1-8</td>
<td>A and C</td>
<td>-2872.3</td>
<td>51644</td>
<td>-22073</td>
<td>0.9980</td>
</tr>
<tr>
<td>using Sorbfil</td>
<td>H and C</td>
<td></td>
<td>-44.705</td>
<td>883.99</td>
<td>-254.09</td>
<td>0.9989</td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>A and C</td>
<td>58.964</td>
<td>23891</td>
<td>31358</td>
<td>0.9758</td>
</tr>
<tr>
<td></td>
<td>H and C</td>
<td></td>
<td>-5.2679</td>
<td>507.26</td>
<td>482.6</td>
<td>0.9880</td>
</tr>
<tr>
<td>TLC-Image analysis</td>
<td>1-8</td>
<td>A and C</td>
<td>-18.767</td>
<td>305.84</td>
<td>-101.98</td>
<td>0.9967</td>
</tr>
<tr>
<td>using Scion Image</td>
<td>2-10</td>
<td>A and C</td>
<td>0.7321</td>
<td>119.66</td>
<td>261.8</td>
<td>0.9654</td>
</tr>
</tbody>
</table>

\(a^*\) polynomial regression: \(y = ax^2 + bx + c\); \(A = \text{Area}, H = \text{Height}, C = \text{Concentration}\)

showed the polynomial regression data with good relationship \((R^2 > 0.99)\) over the concentration range of 1-8 µg/spot (Table 1). At higher concentration range, 2-10 µg/spot, poorer correlation coefficients were obtained.

In order to assess and compare the sensitivity of detection limits obtained from TLC-densitometric and TLC-image analysis methods using Scion Image and Sorbfil TLC Videodensitometer, the linear regression data constructed from the lower concentration range (1, 2 and 4 µg/spot) were used to determine LOD and LOQ values (Ansari et al., 2005) (Table 2). The data showed that LOD and LOQ determined from TLC-densitometric method were comparable to the values from TLC-image analysis method using Sorbfil TLC Videodensitometer. TLC-image analysis using Scion Image was found to be less sensitive.

Table 2 Detection limits

<table>
<thead>
<tr>
<th>Analytical technique</th>
<th>Regression between</th>
<th>LOD ng/spot</th>
<th>LOQ ng/spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC-Densitometry</td>
<td>A and C</td>
<td>169</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>H and C</td>
<td>103</td>
<td>343</td>
</tr>
<tr>
<td>Image analysis</td>
<td>A and C</td>
<td>170</td>
<td>568</td>
</tr>
<tr>
<td>using Sorbfil</td>
<td>H and C</td>
<td>131</td>
<td>439</td>
</tr>
<tr>
<td>TLC-Image analysis</td>
<td>A and C</td>
<td>419</td>
<td>1397</td>
</tr>
<tr>
<td>using Scion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(A = \text{Area}, H = \text{Height}, C = \text{Concentration}\)

Better detection sensitivity was observed when TLC-image analysis was performed by Sorbfil TLC Videodensitometer. This might be due to the background approximation tool available in the software which could be used to correct the
whole image brightness, thus, providing uniform illumination of the plate before evaluation. Even though TLC-image analysis using Scion Image and Photoshop was found to be less sensitive, Scion image had an advantage of being public software and free downloaded whereas Photoshop was common commercial software and might be suitable for analysis of a TLC image with uniform illumination and spots having distinct color from a background.

Conclusions

Three image analysis software including Photoshop, Sorbfil TLC Videodensitometer software and Scion Image software were used for quantitative evaluation of CFX from TLC images and compared to TLC densitometric method. Regression data and detection sensitivity of quantification of CFX assessed from TLC-image analysis by Sorbfil TLC Videodensitometer software were shown to be comparable to TLC-densitometry. From data above, TLC-image analysis using Sorbfil TLC Videodensitometer could be further applied for rapid determination of CFX in bulk and dosage forms and might be used as alternative to more expensive quantitative chromatographic methods, e.g., TLC densitometry and HPLC, which could not be afforded by small labs.

Acknowledgements

The authors wish to thank Silpakorn University Research and Development Institute, Thailand, for the financial support of this research.

References

Johnsson, R., Traff, G., Sunden, M., and Ellervik, U.

