Physicochemical characterization of a novel chitosan derivative, chitosan sodium biphthalate

Sunitda Khawthong1,2, Pornsak Srianornsak1,2, Sontaya Limmatvapirat1,2, Manee Luangtana-anan1,2, Sathit Niratisai3 and Jurairat Nunthanid*1,2

1Department of Pharmaceutical Technology and 2Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn university, Nakhon Pathom, 73000, Thailand
3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn university, Nakhon Pathom, 73000, Thailand
*Corresponding Author: E-mail: mysunit@hotmail.com

Abstract

Chitosan sodium biphthalate (CSBP) was developed in order to improve the solubility in higher pH media. It was prepared from chitosan (CS) via ring-opening reactions with phthalic anhydride at the partial N-position group of glucosamine units. Physico-chemical properties was investigated by FTIR spectrophotometry and powder X-ray diffraction (PXRD). In the FTIR spectrum of CSBP, the peak assigned to carbonyl stretching (amide I) of phthaloyl amide groups and an asymmetric and a symmetric carboxylate anion stretching were observed indicating the form of CS as sodium biphthalate salt. The halo pattern of PXRD indicated that the substitution of phthaloyl groups at the amino groups of CS made CSBP become an amorphous solid. The solubility of the salt in various pH media was determined by %transmission of the solution using a UV spectrophotometer. CSBP showed much better solubility at neutral and alkaline pH which makes it be possible in applications for enteric and colonic drug release system in pharmaceutical fields.

Keywords: chitosan sodium biphthalate, phthalic anhydride, biopolymer, solubility, physico-chemical property

Introduction

Chitosan is a cationic natural biopolymer composed of β(1-4)-D-glucosamine units. It is generally prepared from chitin by chemical or enzyme reaction. It has a number of properties, such as biocompatibility, biodegradability, nontoxicity, that make it suitable for use in biomedical and pharmaceutical formulations [1]. However, its applications are restricted since CS is soluble only in acid media (pH<5.5) due to the presence of free amino groups along the polymer chain. The presence of these amino groups allows modification of different CS derivatives [2]. Substitutions of chitosan via ring-opening reactions with various cyclic acid anhydrides are the most attractive technique used to improve chitosan solubility and widen its applications [3]. The aim of this study is to develop a novel chitosan derivative, chitosan sodium biphthalate, by reacting CS with phthalic anhydride at the partial N-position groups of the glucosamine units. Physicochemical properties of the salt were characterized by FTIR spectrophotometry and PXRD. The solubility of the salt in various pH media was also evaluated using a UV spectrophotometer.

Experimental and methods

Materials

Chitosan, average molecular weight of 20 kDa with 87% degree of deacetylation was purchased from Seafresh Chitosan Co., Ltd. (Lab.), Thailand. All other chemicals were of reagent grade.

Preparation of CSBP

Chitosan dissolved in 2.5% v/v acetic acid solution was mixed with phthalic anhydride (Ph) in acetone (molar ratio of CS:Ph at 1:0.5) under stirring at 60 °C for 4 h and then left overnight. Afterwards, the mixture was adjusted to pH 6.0 with 0.5 N NaOH solution and dispersed in acetone. The precipitates was filtered and washed by excess acetone, and dried at 50 °C.

Characterization of CSBP

CSBP was characterized using FTIR spectrophotometer (model Magna-IR system 750, Nicolet Biomedical, Madison, WI, USA) and powder X-ray diffractometer (Diffractometer D8, Bruker AXS, Germany). The solubility of CSBP was evaluated from %transmission of the solution in various pH media. The sample (100 mg) was dissolved in 0.1 N NaOH (10 mL). Following stepwise addition of concentrated HCl, %transmittance of the solution at various pH media was measured at 600 nm using a UV spectrophotometer [4].

Results and discussion

Fig.1 showed the FTIR spectra of CS and CSBP. The characteristic peaks of CS at 1652 and 1600 cm⁻¹ assigned to C=O stretching (amide I) and –NH₂ bending, respectively, were observed. In the spectrum of CSBP, the absorption bands of stretching vibration of –OH and –NH at 3500-3400 cm⁻¹ became narrower and shifted to lower wave number after introducing phthaloyl groups. The
carbonyl stretching (amide I) peak near 1644 cm\(^{-1}\) assigned to phthaloyl amide groups was observed while the peak of NH-bending at 1600 cm\(^{-1}\) disappeared. It is suggested that the amino groups of chitosan were substituted with phthaloyl groups. In addition, the strong peak at 1559 cm\(^{-1}\) and 1383 cm\(^{-1}\) regions attributed to an asymmetric and a symmetric carboxylate anion stretching (\(-\text{COO}^-\)) respectively, indicated the form of biphthalate of sodium salt.

In Fig. 2, the crystalline peaks at around 11° and 20° (2θ) were observed in the PXRD pattern of CS. A lot of strong intermolecular and intramolecular hydrogen bonds (H-bonds) make CS form crystalline regions easily and resulted in being insoluble in water. After modification, a halo diffraction pattern of CSBP was observed. It was suggested that the substitution of phthaloyl groups at the amino groups of CS made CSBP become an amorphous solid.

![Fig. 1. FTIR spectra of CS and CSBP](image)

Conclusion

CSBP was successfully prepared. Both FTIR spectra and PXRD patterns confirmed the change of chitosan structure to be a sodium biphthalate salt in an amorphous form. CSBP showed much better solubility in neutral and alkaline solution which makes it be possible in applications for enteric and colonic drug release system in pharmaceutical fields.

References

The Sixth Thailand Materials Science and Technology Conference

In conjunction with
The Sixth National Chitin - Chitosan Conference
Thailand Textile Symposium 2010

August 26-27, 2010
Miracle Grand Convention Hotel, Bangkok, Thailand

Organized by

Conference Sponsors

National Metal and Materials Technology Center (MTEC)
114 Thailand Science Park, Paholyothin Rd., Klong 1,
Klong Luang, Pathumthani 12120
Tel: 66 2564 6500 Fax: 66 2564 6501-5
www.mtec.or.th/MSAT-6
Disclaimer

The book has been photographically reproduced from the best available copy. The papers were not refereed but were reviewed for their technical contents. Editing was restricted to matters of format, general organization and retyping.

The committee assumes no responsibility for the accuracy, completeness or usefulness of the information disclosed in this volume.

Unauthorized use might infringe on privately owned patents of publication right. Please contact the individual authors for permission to reprint or otherwise use information from their papers.
Organized by
National Metal and Materials Technology Center
National Science and Technology Development Agency
Ministry of Science and Technology

Conference Sponsors
Delcam (Thailand) Co., Ltd.
PTT Chemical PCL.
Thai Ceramic Co., Ltd.
Western Digital (Thailand) Co., Ltd.
Sammitr Motors Manufacturing Public Co., Ltd.
Crest Nano Solution (Thailand) Limited
PCL Holding Co., Ltd.
Entech Associate Co., Ltd.
LMS Instruments Co., Ltd.
Elsevier (Singapore) Pte Ltd.
Advisory Committee

Dr. Kopr Kritayakirana
Mr. Khemadhat Sukondhasingha
Assoc. Prof. Dr. Sakarindr Bhumiratana

National Science and Technology Development Agency
Sikor Co., Ltd.
National Science and Technology Development Agency

Chairman

Assoc. Prof. Dr. Werasak Udomkichdecha
National Metal and Materials Technology Center

Vice Chairman

Asst. Prof. Dr. Krisda Suchiva
Prof. Dr. Pramote Dechaumphai
Assoc. Prof. Siriluck Nivitchanyong
National Metal and Materials Technology Center
National Metal and Materials Technology Center
National Metal and Materials Technology Center

Technical Committee

Prof. Dr. Chai Jaturapitakkul
Asst. Prof. Dr. Chanchai Thongpin
Assoc. Prof. Dr. Chaowalit Limmaneevichitr
Prof. Dr. Charan Mahatumarat
Assoc. Prof. Dr. Charussri Lorprayoon
Assoc. Prof. Dr. Ittipol Jangchud
Assoc. Prof. Dr. Klarong Sriroth
Assoc. Prof. Dr. Metha Rutnakornpituk
Dr. Nandh Thavarungkul
Prof. Dr. Narongrit Sombatsompop
Asst. Prof. Dr. Navadol Laosiriyojana
Asst. Prof. Dr. Niphon Thongpin
Asst. Prof. Dr. Nuchithana Poolthong
Prof. Dr. Nuntavan Bunyapraphatsara
Dr. Paninarn Wanakamol
Ms. Peesamai Jenvanitpanjakul
Asst. Prof. Dr. Pratuang Puthson
Dr. Priyana Sainamthip
Dr. RATCHATEE TECHAPRACHAROENKIJ
Dr. Robert Molloy
Dr. Rojana Pornprasertsuk
Assoc. Prof. Samruad Inban
Asst. Prof. Dr. Sandhya Babel
Asst. Prof. Dr. Sawai Dankaivijit
Assoc. Prof. Dr. Sirikul Wisutmethangoon
Assoc. Prof. Dr. Sirisak Harnchoowong
Prof. Dr. Somnuk Tangtermsirikul
Assoc. Prof. Songkloed Jarusombuti
Dr. Subongkoj Topaiboul
Assoc. Prof. Dr. Supachart Chungpaibulpatana
Assoc. Prof. Dr. Supatrat Jinawath
Assoc. Prof. Dr. Surachate Chutima
Assoc. Prof. Dr. Sutin Kuharuangrong

King Mongkut’s University of Technology Thonburi
Silpakorn University
King Mongkut’s University of Technology Thonburi
Chulalongkorn University
Suanaree University of Technology
King Mongkut’s Institute of Technology Ladkrabang
Kasetsart University
Naresuan University
King Mongkut’s University of Technology Thonburi
King Mongkut’s University of Technology Thonburi
King Mongkut’s University of Technology Thonburi
Kasetsart University
King Mongkut’s University of Technology Thonburi
Mahidol University
Srinakarinwirot University
National Science and Technology Development Agency
Kasetsart University
Thai Ceramic Co., Ltd.
Kasetsart University
Chiang Mai University
Chulalongkorn University
Khon Kaen University
Thammasat University
Chulalongkorn University
Prince of Songkla University
King Mongkut’s University of Technology North Bangkok
Thammasat University
Kasetsart University
Rajamangala University of Technology Lanna
Thammasat University
Chulalongkorn University
King Mongkut’s University of Technology Thonburi
Suanaree University of Technology
National Metal and Materials Technology Center

Dr. Anchalee Manonukul
Dr. Angkhana Jaroenworaluck
Dr. Anucha Wannagon
Dr. Apinya Panupat
Dr. Aree Thanaboonsombut
Dr. Asira Fuongfuchat
Dr. Atitsa Petchsuk
Ms. Boonlom Thavornyutikarn
Dr. Boonyawan Yoosuk
Dr. Chaiwut Gamonpilas
Dr. Chaiyaporn Pomchaitaward
Dr. Chalemcchai Wanichlamlert
Dr. Chanchana Thanachayanont
Dr. Charusporn Mongkolkachit
Dr. Chatrchai Chandenduang
Dr. Cheaveewan Kongkaew
Dr. Chi-na Benyajati
Dr. Chureerat Prahsarn
Dr. Danu Prommin
Dr. Darunee Aussawasathien
Dr. Doungporn Sirikitikul
Dr. Duangduen Atong
Dr. Ekkarut Viyanit
Dr. Jintamai Suwanprateeb
Dr. Jittiporn Kruenate
Dr. Jongkol Iammi
Dr. Julathep Kajornchaiyakul
Dr. Katanchalee Mai-ngam
Dr. Kriskrai Sithisiripraptip
Dr. Kritsada Prapakorn
Dr. Kuljira Sujirote
Dr. Monthon Nakpathom
Dr. Naruporn Monmaturapoj
Dr. Nirut Naksuk
Dr. Nisa Seetapan
Dr. Nukul Euaphantasate
Dr. Nuwong Chollacoop
Dr. Pairote Jittham
Dr. Pakamard Saewong
Dr. Pakawat Sancharoen
Dr. Panadda Niranatlumpong

Dr. Parjaree Thavorniti
Dr. Pasaree Laokjcharoen
Dr. Pasu Sirisalee
Dr. Pavadee Aungkavattana
Dr. Pawadee Methacanon
Dr. Pitak Laoratanakul
Dr. Piyawit Koombongse
Dr. Pomthong Malakul Na Ayudhaya
Dr. Pongdhorn Sae-oui
Dr. Pongsak Dulyapraphant
Dr. Raktipong Sahamitmongkol
Dr. Rittirong Pruthtikul
Dr. Ruangdaj Tongsri
Dr. Samerkhao Jongthammanurak
Dr. Sarawut Lerspalungsanti
Dr. Sasawat Mahabunphachai
Dr. Sirinee Thaiwatthana
Dr. Siriporn Tanodekaew
Dr. Sitha Sukkasi
Dr. Sithisuntorn Supothina
Dr. Somboon Otarawanna
Dr. Somboon Sahasithiwat
Dr. Somnuk Sirisoonthorn
Dr. Sompong Srimanoasaowapak
Dr. Sumittra Charojrochkul
Dr. Supaporn Wansom
Dr. Surapich Loykulnant
Dr. Suwat Jirathearanat
Dr. Tanakorn Tantanawat
Dr. Thammaratpanyathanmaporn
Mr. Thanaporn Korad
Dr. Thanasat Sooksimuang
Dr. Thanawadee Leejarkpai
Dr. Thumrongrut Mungcharoen
Dr. Wanida Janvikul
Dr. Wanida Pongsaksawad
Dr. Witchuda Daud
Dr. Worawarit Kobsiriphat
Dr. Yot Boontongkong